Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Biomolecules ; 14(3)2024 Mar 04.
Article En | MEDLINE | ID: mdl-38540722

Schizophrenia is a complex mental condition, with key symptoms marked for diagnosis including delusions, hallucinations, disorganized thinking, reduced emotional expression, and social dysfunction. In the context of major developmental hypotheses of schizophrenia, notably those concerning maternal immune activation and neuroinflammation, we studied NLRP1 expression and content in the postmortem brain tissue of 10 schizophrenia and 10 control subjects. In the medial orbitofrontal cortex (Brodmann's area 11/12) and dorsolateral prefrontal cortex (area 46) from both hemispheres of six schizophrenia subjects, the NLRP1 mRNA expression was significantly higher than in six control brains (p < 0.05). As the expression difference was highest for the medial orbitofrontal cortex in the right hemisphere, we assessed NLRP1-immunoreactive pyramidal neurons in layers III, V, and VI in the medial orbitofrontal cortex in the right hemisphere of seven schizophrenia and five control brains. Compared to controls, we quantified a significantly higher number of NLRP1-positive pyramidal neurons in the schizophrenia brains (p < 0.01), suggesting NLRP1 inflammasome activation in schizophrenia subjects. Layer III pyramidal neuron dysfunction aligns with working memory deficits, while impairments of pyramidal neurons in layers V and VI likely disrupt predictive processing. We propose NLRP1 inflammasome as a potential biomarker and therapeutic target in schizophrenia.


Schizophrenia , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Cerebral Cortex/metabolism , Prefrontal Cortex/metabolism , Pyramidal Cells/metabolism , NLR Proteins/genetics , NLR Proteins/metabolism
2.
Neurol Int ; 15(3): 842-856, 2023 Jul 07.
Article En | MEDLINE | ID: mdl-37489359

BACKGROUND: Individuals with specific TREM2 gene variants that encode for a Triggering Receptor Expressed on Myeloid cells 2 have a higher prevalence of Alzheimer's disease (AD). By interacting with amyloid and apolipoproteins, the TREM2 receptor regulates the number of myeloid cells, phagocytosis, and the inflammatory response. Higher TREM2 expression has been suggested to protect against AD. However, it is extremely difficult to comprehend TREM2 signaling in the context of AD. Previous results are variable and show distinct effects on diverse pathological changes in AD, differences between soluble and membrane isoform signaling, and inconsistency between animal models and humans. In addition, the relationship between TREM2 and inflammasome activation pathways is not yet entirely understood. OBJECTIVE: This study aimed to determine the relationship between soluble TREM2 (sTREM2) levels in cerebrospinal fluid (CSF) and plasma samples and other indicators of AD pathology. METHODS: Using the Enzyme-Linked Immunosorbent Assay (ELISA), we analyzed 98 samples of AD plasma, 35 samples of plasma from individuals with mild cognitive impairment (MCI), and 11 samples of plasma from healthy controls (HC), as well as 155 samples of AD CSF, 90 samples of MCI CSF, and 50 samples of HC CSF. RESULTS: CSF sTREM2 levels were significantly correlated with neurofibrillary degeneration, cognitive decline, and inflammasome activity in AD patients. In contrast to plasma sTREM2, CSF sTREM2 levels in the AD group were higher than those in the MCI and HC groups. Moreover, concentrations of sTREM2 in CSF were substantially higher in the MCI group than in the HC group, indicating that CSF sTREM2 levels could be used not only to distinguish between HC and AD patients but also as a biomarker to detect earlier changes in the MCI stage. CONCLUSIONS: The results indicate CSF sTREM2 levels reliably predict neurofibrillary degeneration, cognitive decline, and inflammasome activation, and also have a high diagnostic potential for distinguishing diseased from healthy individuals. To add sTREM2 to the list of required AD biomarkers, future studies will need to include a larger number of patients and utilize a standardized methodology.

3.
Biomedicines ; 11(4)2023 Mar 24.
Article En | MEDLINE | ID: mdl-37189622

The tauopathy of Alzheimer's disease (AD) is first observed in the brainstem and entorhinal cortex, spreading trans-synaptically along specific pathways to other brain regions with recognizable patterns. Tau propagation occurs retrogradely and anterogradely (trans-synaptically) along a given pathway and through exosomes and microglial cells. Some aspects of in vivo tau spreading have been replicated in transgenic mice models expressing a mutated human MAPT (tau) gene and in wild-type mice. In this study, we aimed to characterize the propagation of different forms of tau species in non-transgenic 3-4 months old wild-type rats after a single unilateral injection of human tau oligomers and tau fibrils into the medial entorhinal cortex (mEC). We determined whether different variants of the inoculated human tau protein, tau fibrils, and tau oligomers, would induce similar neurofibrillary changes and propagate in an AD-related pattern, and how tau-related pathological changes would correlate with presumed cognitive impairment. We injected human tau fibrils and tau oligomers stereotaxically into the mEC and examined the distribution of tau-related changes at 3 days and 4, 8, and 11 months post-injection using antibodies AT8 and MC1, which reveal early phosphorylation and aberrant conformation of tau, respectively, HT7, anti-synaptophysin, and the Gallyas silver staining method. Human tau oligomers and tau fibrils exhibited some similarities and some differences in their ability to seed and propagate tau-related changes. Both human tau fibrils and tau oligomers rapidly propagated from the mEC anterogradely into the hippocampus and various parts of the neocortex. However, using a human tau-specific HT7 antibody, 3 days post-injection we found inoculated human tau oligomers in the red nucleus, primary motor, and primary somatosensory cortex, a finding not seen in animals inoculated with human tau fibrils. In animals inoculated with human tau fibrils, 3 days post-injection the HT7 antibody showed fibrils in the pontine reticular nucleus, a finding explained only by uptake of human tau fibrils by incoming presynaptic fibers to the mEC and retrograde transport of inoculated human tau fibrils to the brainstem. Rats inoculated with human tau fibrils showed as early as 4 months after inoculation a spread of phosphorylated tau protein at the AT8 epitopes throughout the brain, dramatically faster propagation of neurofibrillary changes than with human tau oligomers. The overall severity of tau protein changes 4, 8, and 11 months after inoculation of human tau oligomers and tau fibrils correlated well with spatial working memory and cognition impairments, as measured by the T-maze spontaneous alternation, novel object recognition, and object location tests. We concluded that this non-trangenic rat model of tauopathy, especially when using human tau fibrils, demonstrates rapidly developing pathologic alterations in neurons, synapses, and identifiable pathways together with cognitive and behavioral changes, through the anterograde and retrograde spreading of neurofibrillary degeneration. Therefore, it represents a promising model for future experimental studies of primary and secondary tauopathies, especially AD.

4.
Biomedicines ; 11(4)2023 Apr 12.
Article En | MEDLINE | ID: mdl-37189779

The role of metals in the pathogenesis of Alzheimer's disease (AD) is still debated. Although previous research has linked changes in essential metal homeostasis and exposure to environmental heavy metals to the pathogenesis of AD, more research is needed to determine the relationship between metals and AD. In this review, we included human studies that (1) compared the metal concentrations between AD patients and healthy controls, (2) correlated concentrations of AD cerebrospinal fluid (CSF) biomarkers with metal concentrations, and (3) used Mendelian randomization (MR) to assess the potential metal contributions to AD risk. Although many studies have examined various metals in dementia patients, understanding the dynamics of metals in these patients remains difficult due to considerable inconsistencies among the results of individual studies. The most consistent findings were for Zn and Cu, with most studies observing a decrease in Zn levels and an increase in Cu levels in AD patients. However, several studies found no such relation. Because few studies have compared metal levels with biomarker levels in the CSF of AD patients, more research of this type is required. Given that MR is revolutionizing epidemiologic research, additional MR studies that include participants from diverse ethnic backgrounds to assess the causal relationship between metals and AD risk are critical.

5.
Cells ; 11(14)2022 07 17.
Article En | MEDLINE | ID: mdl-35883667

Neuroinflammation is one of the core pathological features of Alzheimer's disease (AD) as both amyloid ß (Aß) and tau monomers and oligomers can trigger the long-term pro-inflammatory phenotype of microglial cells with consequent overactivation of the inflammasomes. To investigate the NLRP1 inflammasome activation in AD, we analyzed the expression of NLRP1, ASC, cleaved gasdermin (cGSDMD), and active caspase-6 (CASP-6) proteins in each hippocampal subdivision (hilar part of CA3, CA2/3, CA1, subiculum) of postmortem tissue of 9 cognitively healthy controls (HC) and 11 AD patients whose disease duration varied from 3 to 7 years after the clinical diagnosis. The total number of neurons, along with the total number of neurofibrillary tangles (NFTs), were estimated in Nissl- and adjacent modified Bielschowsky-stained sections, respectively, using the optical disector method. The same 9 HC and 11 AD cases were additionally semiquantitatively analyzed for expression of IBA1, HLA-DR, and CD68 microglial markers. Our results show that the expression of NLRP1, ASC, and CASP-6 is present in a significantly greater number of hippocampal formation neurons in AD brains compared to controls, suggesting that the NLRP1 inflammasome is more active in the AD brain. None of the investigated inflammasome and microglial markers were found to correlate with the age of the subjects or the duration of AD. However, besides positive correlations with microglial IBA1 expression in the subiculum and with microglial CD68 expression in the CA1 field and subiculum in the AD group, the overall NLRP1 expression in the hippocampal formation was positively correlated with the number of NFTs, thus providing a causal link between neuroinflammation and neurofibrillary degeneration. The accumulation of AT8-immunoreactive phosphorylated tau proteins that we observed at nuclear pores of large pyramidal neurons of the Ammon's horn further supports their role in the extent of neuronal dysfunction and degeneration in AD. This is important because unlike fibrillar amyloid-ß deposits that are not related to dementia severity, total NFTs and neuron numbers in the hippocampal formation, especially in the CA1 field, are the best correlates of cognitive deterioration in both human brain aging and AD. Our findings also support the notion that the CA2 field vulnerability is strongly linked to specific susceptibilities to different tauopathies, including primary age-related tauopathy. Altogether, these findings contrast with reports of nonsignificant microglial activation in aged nonhuman primates and indicate that susceptibility to inflammasome activation may render the human brain comparatively more vulnerable to neurodegenerative changes and AD. In conclusion, our results confirm a key role of NLRP1 inflammasome in AD pathogenesis and suggest NLRP1 as a potential diagnostic marker and therapeutic target to slow or prevent AD progression.


Alzheimer Disease , Inflammasomes , Aged , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Hippocampus/metabolism , Humans , Inflammasomes/metabolism , Microglia/metabolism , NLR Proteins/metabolism
6.
Int J Mol Sci ; 24(1)2022 Dec 27.
Article En | MEDLINE | ID: mdl-36613911

Various metals have been associated with the pathogenesis of Alzheimer's disease (AD), principally heavy metals that are environmental pollutants (such as As, Cd, Hg, and Pb) and essential metals whose homeostasis is disturbed in AD (such as Cu, Fe, and Zn). Although there is evidence of the involvement of these metals in AD, further research is needed on their mechanisms of toxicity. To further assess the involvement of heavy and essential metals in AD pathogenesis, we compared cerebrospinal fluid (CSF) AD biomarkers to macro- and microelements measured in CSF and plasma. We tested if macro- and microelements' concentrations (heavy metals (As, Cd, Hg, Ni, Pb, and Tl), essential metals (Na, Mg, K, Ca, Fe, Co, Mn, Cu, Zn, and Mo), essential non-metals (B, P, S, and Se), and other non-essential metals (Al, Ba, Li, and Sr)) are associated with CSF AD biomarkers that reflect pathological changes in the AD brain (amyloid ß1-42, total tau, phosphorylated tau isoforms, NFL, S100B, VILIP-1, YKL-40, PAPP-A, and albumin). We used inductively coupled plasma mass spectroscopy (ICP-MS) to determine macro- and microelements in CSF and plasma, and enzyme-linked immunosorbent assays (ELISA) to determine protein biomarkers of AD in CSF. This study included 193 participants (124 with AD, 50 with mild cognitive impairment, and 19 healthy controls). Simple correlation, as well as machine learning algorithms (redescription mining and principal component analysis (PCA)), demonstrated that levels of heavy metals (As, Cd, Hg, Ni, Pb, and Tl), essential metals (Ca, Co, Cu, Fe, Mg, Mn, Mo, Na, K, and Zn), and essential non-metals (P, S, and Se) are positively associated with CSF phosphorylated tau isoforms, VILIP-1, S100B, NFL, and YKL-40 in AD.


Alzheimer Disease , Mercury , Metals, Heavy , Humans , Chitinase-3-Like Protein 1 , Alzheimer Disease/cerebrospinal fluid , Cadmium , Amyloid beta-Peptides , Lead , Metals, Heavy/metabolism , Biomarkers/cerebrospinal fluid
7.
Prog Mol Biol Transl Sci ; 168: 99-145, 2019.
Article En | MEDLINE | ID: mdl-31699331

The pathogenesis of Alzheimer's disease (AD) is only partly understood. This is the probable reason why significant efforts to treat or prevent AD have been unsuccessful. In fact, as of April 2019, there have been 2094 studies registered for AD on the clinicaltrials.gov U.S. National Library of Science web page, of which only a few are still ongoing. In AD, abnormal accumulation of amyloid and tau proteins in the brain are thought to begin 10-20 years before the onset of overt symptoms, suggesting that interventions designed to prevent pathological amyloid and tau accumulation may be more effective than attempting to reverse a pathology once it is established. However, to be successful, such early interventions need to be selectively administered to individuals who will likely develop the disease long before the symptoms occur. Therefore, it is critical to identify early biomarkers that are strongly predictive of AD. Currently, patients are diagnosed on the basis of a variety of clinical scales, neuropsychological tests, imaging and laboratory modalities, but definitive diagnosis can be made only by postmortem assessment of underlying neuropathology. People suffering from AD thus may be misdiagnosed clinically with other primary causes of dementia, and vice versa, thereby also reducing the power of clinical trials. The amyloid cascade hypothesis fits well for the familial cases of AD with known mutations, but is not sufficient to explain sporadic, late-onset AD (LOAD) that accounts for over 95% of all cases. Since the earliest descriptions of AD there have been neuropathological features described other than amyloid plaques (AP) and neurofibrillary tangles (NFT), most notably gliosis and neuroinflammation. However, it is only recently that genetic and experimental studies have implicated microglial dysfunction as a causal factor for AD, as opposed to a merely biological response of its accumulation around AP. Additionally, many studies have suggested the importance of changes in blood-brain barrier (BBB) permeability in the pathogenesis of AD. Here we suggest how these less investigated aspects of the disease that have gained increased attention in recent years may contribute mechanistically to the development of lesions and symptoms of AD.


Alzheimer Disease/pathology , Blood-Brain Barrier/pathology , Immunity, Innate/immunology , Alzheimer Disease/etiology , Alzheimer Disease/immunology , Animals , Humans
8.
Front Aging Neurosci ; 11: 271, 2019.
Article En | MEDLINE | ID: mdl-31636558

Uncontrolled immune response in the brain contributes to the progression of all neurodegenerative disease, including Alzheimer's disease (AD). Recent investigations have documented the prion-like features of tau protein and the involvement of microglial changes with tau pathology. While it is still unclear what sequence of events is causal, it is likely that tau seeding potential and microglial contribution to tau propagation act together, and are essential for the development and progression of degenerative changes. Based on available evidence, targeting tau seeds and controlling some signaling pathways in a complex inflammation process could represent a possible new therapeutic approach for treating neurodegenerative diseases. Recent findings propose novel diagnostic assays and markers that may be used together with standard methods to complete and improve the diagnosis and classification of these diseases. In conclusion, a novel perspective on microglia-tau relations reveals new issues to investigate and imposes different approaches for developing therapeutic strategies for AD.

9.
Curr Alzheimer Res ; 15(13): 1244-1260, 2018.
Article En | MEDLINE | ID: mdl-30207231

INTRODUCTION: The pathological process of Alzheimer's disease (AD) in the brain likely begins 20-30 years earlier than the emergence of its first clinical symptoms and symptoms of AD often overlap with the symptoms of other primary causes of dementia. Therefore, it is crucially important to improve early and differential diagnosis of the disease. Event-related potentials (ERP) measured non-invasively by electroencephalography have shown diagnostic potential in AD. AIMS: The aim of this study was to compare the efficiency of P300 and N200 potentials and reaction time (RT) with commonly used protein biomarkers measured in the cerebrospinal fluid (CSF), including amyloid ß peptide (ß1-42), total tau (t-tau), tau protein phosphorylated at threonine 181 (p-tau181), tau protein phosphorylated at serine 199 (p-tau199), tau protein phosphorylated at threonine 231 (p-tau231), and visinin-like protein 1 (VILIP-1) in differential diagnosis of AD in mild cognitive impairment (MCI) and AD patients. SUBJECTS: The study involved 49 AD patients, 28 patients with MCI, 4 healthy control subjects and 16 patients with other primary causes of dementia. RESULTS: ERP (P300RT, N200RT, P300 counting and N200 counting) showed a moderate to strong correlation with protein CSF biomarkers. We confirmed previous observations of moderate to strong correlation between ERP and neuropsychological testing and showed that P300 latency and RT are shortened in AD patients on therapy with acetylcholinesterase inhibitors. Using ERP and RT, a predictive model for determination of AD likelihood in MCI patients was developed, detecting 56.3% of MCI patients with high risk for development of AD in our cohort. MCI patients with pathological levels of Aß1-42 had prolonged P300 latency, indicating that a combination of ERP and CSF protein biomarkers could improve the differential diagnosis of AD in MCI patients. Additionally, the results suggested the potential of P300 latency in differentiating AD and FTD patients. CONCLUSION: Our data provide possible solutions for improvement of differential diagnosis of AD, and reveal that the diagnostic efficiency of CSF protein biomarkers t-tau, p-tau181, p-tau199, p-tau231 and VILIP-1 could be improved by adding ERP in clinical practice.


Alzheimer Disease , Biomarkers/cerebrospinal fluid , Event-Related Potentials, P300/physiology , Evoked Potentials/physiology , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/physiopathology , Electroencephalography , Female , Humans , Male , Mental Status Schedule , Middle Aged , Neurocalcin/cerebrospinal fluid , Neuropsychological Tests , Peptide Fragments/cerebrospinal fluid , ROC Curve , Reaction Time/physiology , tau Proteins/cerebrospinal fluid
10.
CNS Neurosci Ther ; 24(8): 734-740, 2018 08.
Article En | MEDLINE | ID: mdl-29453935

BACKGROUND: The diagnosis of either Alzheimer's disease (AD) or vascular dementia (VaD) is still largely based on clinical guidelines and exclusion of other diseases that may lead to dementia. AIMS: In this study, we assessed whether the use of sensitive and specific biomarkers such as phosphorylated tau proteins could contribute to an earlier and more accurate diagnosis of AD and VaD, as well as to their differentiation. MATERIAL AND METHODS: A total of 198 patients, of which 152 had AD, 28 VaD, and 18 were healthy controls (HC), were included in the analyses. We analyzed cerebrospinal fluid (CSF) levels of total tau protein (t-tau), tau protein phosphorylated at threonine 231 (p-tau231), and factor score (FS) determined by combination of p-tau231 and Mini-Mental State Examination (MMSE) in patients with AD and VaD, as well as in HC. We tested the diagnostic accuracy of these biomarkers in the CSF and FS (p-tau231, MMSE) in differentiating AD from VaD and HC. RESULTS: Total tau levels were significantly elevated in subjects with AD compared to HC, as well as in VaD subjects compared to HC. DISCUSSION: p-tau231 levels were significantly higher in patients with ADvsHC as well in patients with VaD vsHC. p-tau231 levels did not distinguish AD from VaD patients. Importantly, FS(p-tau231 and MMSE) showed statistically significant differences in the distribution of subjects with AD and VaD. CONCLUSION: These results indicate that FS (p-tau231 and MMSE) has a strong potential to provide an early distinction between AD and VaD.


Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Biomarkers/cerebrospinal fluid , Dementia, Vascular/cerebrospinal fluid , Diagnosis, Differential , tau Proteins/cerebrospinal fluid , Aged , Female , Humans , Male , Mental Status and Dementia Tests , Middle Aged , Phosphorylation , ROC Curve , Retrospective Studies , Statistics, Nonparametric
...